Какие тайны хранят внутри нейтронные звезды? У физиков уже есть ответы

Егор


Когда массивная звезда умирает, становясь сверхновой, взрыв — это только начало конца. Большая часть звездной материи разлетается во все стороны, но железное сердце звезды остается на месте. Это ядро имеет массу около двух солнечных, и быстро сжимается до сферы с радиусом в пару десятков километров. Сокрушительное внутреннее давление — достаточное, чтобы сжать Эверест до размеров кубика сахара — превращает субатомные частицы, такие как протоны и электроны, в нейтроны.

Астрономы знают очень много о том, как рождаются нейтронные звезды. Но что именно происходит потом внутри этих сверхплотных ядер, остается загадкой. Некоторые исследователи предполагают, что они состоят только из нейтронов. Другие считают, что невероятное давление уплотняет материал вблизи центра в более экзотические частицы и состояния материи. Теперь, после десятилетий споров, исследователи приближаются к разгадке этой тайны, отчасти благодаря инструменту на Международной космической станции, называемому «Исследователь внутреннего состава нейтронной звезды» (NICER).

В декабре прошлого года эта космическая обсерватория предоставила астрономам одни из самых точных измерений массы и радиуса нейтронной звезды, а также неожиданные данные о ее магнитном поле. Другие данные поступают из исследовательских центров, занимающихся гравитационными волнами, с помощью которых можно наблюдать, как искажаются нейтронные звезды при столкновении. Такие объединенные наблюдения дают исследователям возможность делать выводы о том, что заполняет внутренности нейтронных звезд.

Для многих специалистов в этой области такие результаты знаменуют собой поворотный момент в изучении одних из самых загадочных объектов Вселенной. «Это начало золотого века физики нейтронных звезд», — говорит Юрген Шаффнер-Билич, физик-теоретик из Университета Гете во Франкфурте, Германия.

Запущенный в 2017 году на борту ракеты SpaceX Falcon 9, телескоп стоимостью 62 миллиона долларов США находится за пределами МКС и собирает рентгеновские лучи, исходящие от пульсаров — вращающихся нейтронных звезд, которые излучают заряженные частицы в узких лучах, которые с одинаковой периодичностью «чиркают» по Земле. Рентгеновские лучи исходят из горячих точек на северном и южном магнитных полюсах пульсара с температурами в несколько миллионов градусов, где мощное магнитное поле отрывает заряженные частицы с поверхности и отправляет их в космос.


NICER на борту МКС.

NICER обнаруживает эти рентгеновские лучи с помощью 56 пластинок с золотым напылением, и отмечает время их прибытия с точностью до 100 наносекунд. Благодаря этой способности исследователи могут точно отслеживать горячие точки, когда нейтронная звезда вращается со скоростью до 1000 оборотов в секунду. Гравитация таких космических тел крайне велика, поэтому они искривляют пространство-время настолько сильно, что NICER также обнаруживает излучение от тех нейтронных звезд, лучи из горячих точек которых не направлены в сторону Земли. 

Общая теория относительности Эйнштейна дает возможность вычислить отношение массы звезды к радиусу через величину искривления света. Эти и другие наблюдения позволяют астрофизикам точно определить массы и радиусы таких мертвых звезд. И, в свою очередь, эти два свойства могут помочь в определении того, что происходит внутри ядер.

Глубокая темная тайна

Нейтронные звезды становятся тем сложнее, чем глубже мы пытаемся их узнать. Считается, что под тонкой атмосферой, состоящей в основном из водорода и гелия, остатки звезд имеют внешнюю кору толщиной всего в один-два сантиметра, содержащую атомные ядра и свободно перемещающиеся электроны. Исследователи полагают, что ионизированные элементы упаковываются вместе в следующем слое, создавая решетку во внутренней коре. Еще ниже давление настолько велико, что почти все протоны соединяются с электронами, превращаясь в нейтроны. То, что происходит еще глубже, в лучшем случае туманно.

Физики имеют некоторое представление о том, что там происходит, благодаря ускорителям частиц на Земле. На таких объектах, как Брукхейвенская национальная лаборатория в Аптоне и Большой адронный коллайдер CERN близ Женевы, исследователи объединяют вместе тяжелые атомы, такие как свинец и золото, для создания небольшого количества сверхплотного материала. Но эти кинетические эксперименты генерируют вспышки с температурами в миллиарды или даже триллионы градусов, в которых протоны и нейтроны превращаются в суп из составляющих их кварков и глюонов. Современные приборы мало что могут фиксировать в таких фантастических условиях.

Вполне возможно, что кварки и глюоны свободно перемещаются внутри нейтронных звезд. Или же экстремальные энергии могут привести к созданию частиц, называемых гиперонами. Подобно нейтронам, эти частицы содержат три кварка. Но в то время как нейтроны содержат самые простые и низкоэнергетические кварки, известные как верхний и нижний, в гиперионе по крайней мере один из них заменен экзотическим «странным» кварком. Другая возможность заключается в том, что центр нейтронной звезды – это конденсат Бозе-Эйнштейна, состояние материи, при котором все субатомные частицы действуют как единое квантово-механическое целое.


Предполагаемый состав нейтронных звезд.

Важно отметить, что каждая теоретическая модель напрямую зависит от колоссальной гравитации нейтронной звезды. Они имеют различные радиусы и массы, и, следовательно, различные внутренние давления. Например, нейтронная звезда с центром, состоящим из конденсата Бозе-Эйнштейна, вероятно, будет иметь меньший радиус, чем звезда, полностью состоящая из «обычных» нейтронов. А нейтронная звезда с гиперионным ядром будет иметь еще меньший радиус.

Чтобы выяснить, какая из моделей имеет право на существование (или, может быть, они все верны при различных условиях), требуются точные измерения размера и массы нейтронных звезд, но исследователи пока не смогли довести свои методы до нужного уровня, чтобы сказать, какая из возможностей наиболее вероятна. Астрономы обычно вычисляют массы, наблюдая за нейтронными звездами в парах. Когда объекты вращаются вокруг друг друга, они гравитационно влияют на компаньона, что позволяет физиками «взвесить» их. 

Массы примерно 35 нейтронных звезд были измерены таким образом, хотя погрешность доходит до одной массы Солнца, то есть до 50%. Всего лишь для десятка или около того звезд были рассчитаны радиусы, но во многих случаях современные методы не могут определить это значение с точностью выше, чем несколько километров — а ведь это погрешность до одной пятой размера этих необычных космических объектов.

Метод измерения горячих точек впервые использовался рентгеновской обсерваторией XMM-Newton Европейского космического агентства, которая была запущена в 1999 году и все еще работает. Современный NICER в четыре раза более чувствителен и имеет в сотни раз лучшее временное разрешение. 

В течение следующих двух-трех лет команда рассчитывает использовать более точные методы для определения масс и габаритов еще около полудюжины нейтронных звезд, фиксируя их радиусы с точностью до полукилометра. С такой точностью группа будет достаточно подготовлена, чтобы начать конструировать то, что известно как уравнение состояния нейтронной звезды, которое связывает ее массу с радиусом или, что эквивалентно, внутреннее давление с плотностью.

Если ученым особенно повезет и космос предоставит особенно хорошие данные, NICER поможет отбросить некоторые предварительные версии этого уравнения. Но большинство физиков считают, что сама обсерватория, скорее всего, сузит, а не полностью исключит модели того, что происходит в ядрах этих таинственных объектов.

Кропотливая работа

Первой целью NICER был J0030+0451, изолированный пульсар, который вращается примерно 200 раз в секунду и находится в 337 парсеках (1100 световых лет) от Земли, в созвездии Рыб.


Пульсар J0030+0451 с возможными горячими точками.

Две группы, одна из которых базируется в Амстердамском университете, а другая возглавляется исследователями из Мэрилендского университета, внимательно изучили 850 часов наблюдений, постоянно проверяя друг друга. Поскольку кривые блеска горячих точек очень сложны, группам потребовались суперкомпьютеры для моделирования различных конфигураций и определения того, какие из них лучше всего соответствуют данным. 

В итоге они получили схожие результаты, обнаружив, что масса J0030 в 1.3-1.4 раза больше массы Солнца, а радиус составляет примерно 13 километров. Эти результаты не являются окончательными, но они могут быть использованы для подтверждения или опровержения моделей, говорящих о внутренностях нейтронных дыр.

Большим сюрпризом для исследователей оказались форма и положения горячих точек. Канонический вид нейтронных звезд предполагает, что линии магнитного поля похожи на те, что окружают стержневой магнит, с северным и южным магнитными полюсами на противоположных концах звезды, где и расположены круглые горячие точки. В отличие от этого, моделирование голландцев на суперкомпьютере показало, что обе горячие точки J0030 находятся в его южном полушарии, и что одна из них имеет форму полумесяца. Мэрилендская команда рассчитала, что возможен сценарий с тремя горячими точками: двумя южными овальными и одним круглым вблизи вращающегося южного полюса.

Эти результаты подкрепляют предыдущие наблюдения и теории, предполагающие, что магнитные поля нейтронных звезд, которые в триллион раз сильнее, чем у Солнца, могут быть более сложными, чем обычно предполагается. Считается, что после формирования пульсары замедляют свое вращение на протяжении миллионов лет. Но если у них есть звезда-компаньон, вращающаяся вокруг них, они могут украсть материал и угловой момент у этого партнера, сильно ускорив свое вращение.

По мере того как вещество, вытянутое из компаньона, осаждается на внешнюю поверхность звезды, некоторые теоретики предполагают, что оно может воздействовать на слой подповерхностных нейтронов, создавая гигантские вихри, которые закручивают магнитное поле нейтронной звезды в странные структуры. Звезда-партнер в конечном счете может быть полностью поглощена или потерять столько массы, что стать гравитационно несвязанной и улететь, как это могло случиться с ныне одинокой J0030.


Космический каннибализм: нейтронная звезда пожирает своего компаньона.

Работа продолжается

NICER продолжает наблюдать за J0030 для дальнейшего повышения точности измерения радиуса. В то же время, команда стала анализировать данные с второй цели, чуть более тяжелого пульсара, имеющего спутника в виде белого карлика. Другие астрономы использовали наблюдения орбитального танца этой пары для определения массы пульсара, что означает, что у команды NICER есть независимое измерение, которое они могут использовать для подтверждения своих выводов.

Также команда NICER планирует исследовать по меньшей мере пару пульсаров с большой массой, включая нынешнего рекордсмена — нейтронного «гиганта» с массой около 2.14 солнечных. Это должно позволить исследователям узнать верхний предел — точку, в которой нейтронная звезда коллапсирует в черную дыру. О физике, происходящей в недрах таких пограничных звезд, у ученых вообще нет никаких представлений.

Некоторые исследователи также предположили, что NICER может найти две нейтронные звезды с одинаковой массой, но разными радиусами. Это предполагает наличие точки перехода, в которой различия в начальных условиях создают два отличающихся друг от друга ядра. Например, одно из них может содержать в основном нейтроны, а другое состоять из более экзотического материала.

Хотя NICER находится в авангарде, это не единственный инструмент, который используется для изучения внутренностей пульсаров. В 2017 году американская Лазерная интерферометрическая гравитационно-волновая обсерватория (LIGO) вместе с детектором Virgo в Италии уловила сигнал от двух нейтронных звезд, слившихся воедино после длительного гравитационного танца. 

Когда объекты вращались вокруг друг друга до столкновения, они излучали гравитационные волны, которые содержали информацию о размерах и структуре этих звезд. Колоссальное гравитационное воздействие каждой звезды притягивало и деформировало ее партнера, превращая обе сферы в тела каплевидной формы. Искажения в последние моменты жизни нейтронных звезд дают физикам ключ к пониманию податливости материала внутри них.


Гравитационные волны от столкновения нейтронных звезд.

Обсерватория LIGO зафиксировала второе столкновение нейтронных звезд в апреле прошлого года, и в любое время возможно обнаружение новых таких событий. До сих пор эти два слияния лишь намекали на свойства внутренних слоев нейтронных звезд, предполагая, что они не особенно деформируемы. Но нынешнее поколение установок не может наблюдать решающие заключительные моменты, когда деформация наиболее четко отображала бы условия внутри нейтронных звезд.

Ожидается, что гравитационно-волновой детектор Kamioka в Хиде, Япония, заработает позже в этом году, а индийская Обсерватория для гравитационно-волновых наблюдений вблизи Аундха-Наганатха, Маратхвада, в 2024 году. В сочетании с LIGO и Virgo они улучшат чувствительность, потенциально даже улавливая детали моментов, ведущих к столкновениям нейтронных звезд. В 2027 году планируется запуск европейско-китайского спутника eXTP, который будет изучать как изолированные, так и двойные нейтронные звезды, чтобы помочь определить их уравнение состояния.

Сердца нейтронных звезд, вероятно, всегда будут хранить различные секреты. Но физики в ближайшем будущем, похоже, вполне могут начать понимать их внутреннее устройство. «Это давняя головоломка, которая, как вы понимаете, никогда полностью не решится», — говорит Джоселин Рид, астрофизик из Университета штата Калифорния. «Теперь мы подошли к тому моменту, когда научное сообщество сможет ответить на основные вопросы о структуре нейтронных звезд в течение этого десятилетия».
17
iGuides в Яндекс.Дзен —  zen.yandex.ru/iguides
iGuides в Telegram — t.me/iguides
iGuides в VK —  vk.com/iguides
iGuides в Ok.ru — ok.ru/iguides

Будь в курсе последних новостей из мира гаджетов и технологий

Мы в соцсетях

Комментарии

+528
StM
Я бы назвал это не ответами, а очередной теорией. Все что под ногами в основном теория, а тут прям ответы )
27 мая 2020 в 18:43
#
Ikarus
+662
Слушал лекцию про кварковые звезды. Мозг выносит. С одной стороны ужасно интиресно, и поглощает моментально, а с другой, мозг не в состоянии обработать. :)
27 мая 2020 в 23:38
#
Esthet
+1860
Егор! А можно обновленную статью об эксперементальных функциях safari?)
Думаю многое изменилось, какие то опции пропали, думаю что то и добавилось, и вообще интересуют как что работает и что стоит включать а что лучше отключить)
29 мая 2020 в 00:49
#
Kamilla
+1
4 июня 2020 в 10:01
#
melissa
–21
25 июня 2020 в 16:49
#