Google Pixel

Если вас заботит вопрос о том, насколько будет хороша камера вашего следующего смартфона, то стоит обратить внимание на то, что производитель говорит о наличии искусственного интеллекта (ИИ). Если отбросить шумиху и чистый маркетинг, то нет смысла отрицать, что эта технология подняла прогресс фотографии на новый уровень за последние несколько лет и нет никаких сомнений полагать, что темп прогресса замедлятся.

Аппаратное обеспечение тоже не стоит на месте, но самые впечатляющие достижения в области фотографии за последнее время случились на программном уровне, и это во многом благодаря ИИ, который даёт понять объективам куда их навёл пользователь.

Сервис Google Фото продемонстрировал, как искусственный интеллект умеет взаимодействовать с огромными массивами снимков. До его запуска Google использовала машинное обучение для категоризации изображений в Google+, эти навыки перекочевали в Google Фото. ИИ привел в порядок миллиарды неорганизованных пользовательских библиотек в порядок. 

Google Pixel

Искусственный интеллект Google Фото основывался на предыдущей разработки компании DNNresearch, которую поисковый гигант приобрел в 2013 году. Компания создала нейронную сеть с контролируемым обучением, она могла находить визуальные подсказки на уровне пикселей, чтобы идентифицировать категорию. Со временем алгоритм научился правильно распознавать изображения с помощью шаблонов, например, по снимку панды он обучился правильно идентифицировать другие фотографии панд. Он определяет, где черный мех, а где белый, а также пропорции животного. Используя эту информацию ИИ отличает панд от коров голштинской породы. Все эти «знания» классифицируются и заносятся в базу данных, они используются для поиска снимков по абстрактным терминам, таким, как «животное» или «завтрак».

Подобный алгоритм требует много времени и вычислительной мощности, поэтому вся работа выполняется на серверах компании после того, как снимок загружается в облако. Как только фотографии попадают в центр обработки данных (ЦОД) Google начинает использование алгоритма для анализа и маркировки. Примерно через год после запуска сервиса Google Фото компания Apple анонсировала функцию поиска фотографий, которая аналогичным образом задействовала нейронные сети, но в рамках обязательств компании по обеспечению конфиденциальности категоризация выполняется процессором устройства без отправки данных на сервера. Обычно этот процесс занимает несколько дней и происходит в фоновом режиме.

iPhone

Искусственный интеллект и машинное обучение, помимо управления фотографиями, также оказывают большое влияние на процесс создания снимка. Количество объективов на спинках смартфонов растет как грибы, а матрицы увеличиваются в размерах, но физику не обманешь — прогресс ограничивает толщина корпуса мобильных устройств. Несмотря на это, современные смартфоны нередко делают более качественные снимки, чем некоторые камеры. Всё потому, что обычные камеры не в состоянии конкурировать с аппаратным обеспечением смартфонов, которое также важно для фотографии — центральный процессор (ЦП), процессор обработки сигналов изображения и блок ИИ, если такой предусмотрен производителем.

Эти компоненты используются в «вычислительной» фотографии, под этот термин попадают такие явления современного мобильного фото, как эффект глубины резкости портретных режимов и алгоритмы, позволяющие создавать качественные изображения в смартфонах Pixel. Apple использует эту технологию для управления портретным режимом в смартфонах с двумя камерами. Процессор обработки изображений iPhone идентифицирует в кадре человека с помощью одной камеры, а вторая камера создает карту глубины резкости, чтобы отделить объект и размыть фон.  

Google Pixel

Google остается очевидным лидером в области «вычислительной фотографии» и превосходные результаты камер всех трех поколений Pixel тому доказательство. Режим HDR+ использует сложный алгоритм, объединяющий несколько снимков с разным уровнем экспозиции в одну фотографию. Наличие машинного обучения означает, что система продолжает улучшаться со временем. Google обучил свой искусственный интеллект огромному набору данных с помощью сервиса Google Фото и эти знания помогают камере Pixel в подборе правильной экспозиции.  

Говоря о преимуществе смартфонов Google стоит упомянуть режим Night Sight, который с помощью длинных выдержек и алгоритма машинного обучения показывает впечатляющие результаты на съемках в условиях плохого освещения. Эта функция наилучшим образом реализована в Pixel 3, потому что алгоритмы разрабатывались с учетом аппаратного обеспечения этого устройства. Несмотря на это, Google сделала режим Night Sight доступным для всего модельного ряда смартфонов Pixel, даже для самых первых, в которых отсутствует оптическая стабилизация. Это решение доказывает, что программное обеспечение выходит на первый план, когда дело доходит до мобильной фотографии.

iPhone

Тем не менее, аппаратная составляющая все еще имеет значение, особенно в случаях, когда она умеет взаимодействовать с искусственным интеллектом. Отдельные процессоры обработки изображения были очень важны для качества мобильной фотографии, но похоже, что чипы с ИИ будут играть более важную роль в развитии цифровой фотографии. Huawei была первой компанией, представившей систему на кристалле (SoC) с искусственным интеллектом — Kirin 970, хотя Apple Bionic A11 в конечном итоге первым добрался до пользователей. Крупнейший поставщик процессоров Qualcomm не уделяет особого внимания машинному обучению. Google разработала свой собственный чип под названием Pixel Visual Core, который помогает решать задачи связанные с ИИ. Последняя версия Apple A12 Bionic оснащена восьмиядерным нейронным движком, который может выполнять задачи в среде машинного обучения Apple до 9 раз быстрее, чем A11. Apple сообщает, что это дает камере лучшее понимание фокальной плоскости, а это помогает создавать более реалистичную глубину резкости.

Эта технология важнее для эффективного и производительного машинного обучения прямо на устройстве. Google продемонстрировала впечатляющую работу, которая снижает нагрузку на обработку с ghvhom. ЦОД, в то же время нейронные движки (Neural Engine) становятся быстрее с каждым годом. На раннем этапе развития «вычислительной» фотографии у камер смартфонов, которые разрабатывались для работы в тандеме с машинным обучением, есть реальные преимущества. Из всех возможностей искусственного интеллекта, фотография — наиболее практичная область применения. Камера — неотъемлемая часть любого смартфона, а ИИ — отличный способ её улучшить.



iGuides в Telegram — t.me/igmedia
iGuides в Яндекс.Дзен — zen.yandex.ru/iguides.ru



Источник:

The Verge The Verge