Как маленький электрон может рассказать о строении Вселенной

Егор


Какова форма электрона? Если вы вспомните картинки из школьных учебников, то ответ будет вполне простым: электрон — это маленький шарик с отрицательным зарядом, который меньше атома. Это, однако, довольно далеко от истины.

Электрон широко известен как один из основных компонентов атомов, составляющие мир вокруг нас. Именно электроны, окружающие ядро ​​каждого атома, определяют, как протекают химические реакции. Их применение в промышленности широко распространено: от электроники и сварки до формирования изображений и современных ускорителей частиц. Недавно, однако, физический эксперимент под названием ACME (Advanced Cold Molecule Electron Electric Dipole Moment, дослово Улучшенный холодный молекулярный электрон с электрическим дипольным моментом) поставил электрон в центр научного исследования. Вопрос, на который пыталась ответить коллаборация ACME, был обманчиво прост: какова форма электрона?

Классические и квантовые формы?

Насколько физики знают — в настоящее время электроны не имеют внутренней структуры, и, следовательно, не имеют формы в классическом значении этого слова. На современном языке физики элементарных частиц, в которой рассматривается поведение объектов, меньших атомного ядра, фундаментальными блоками материи являются непрерывные жидкостеподобные вещества, известные как «квантовые поля», которые пронизывают все пространство вокруг нас. На этом языке электрон воспринимается как квант или частица «электронного поля». Зная это, имеет ли смысл говорить о форме электрона, если мы не можем увидеть его непосредственно в микроскопе или каком-либо другом оптическом устройстве в привычном нам виде?

Похожее изображение
Типичная школьная модель атома, где электроны показываются кружочками на орбитах вокруг ядра. Увы, на деле все устроено куда сложнее.

Чтобы ответить на этот вопрос, мы должны адаптировать наше определение формы, чтобы оно могло использоваться в невероятно малых масштабах, или, другими словами, в области квантовой физики. Видеть различные объекты в нашем макроскопическом мире — это значит обнаруживать нашими глазами лучи света, отражающиеся от этих объектов вокруг нас.

Проще говоря, мы определяем форму объекта, наблюдая, как они реагируют, когда мы светим на них. Хотя это может казаться странным способом узнавать о форме объекта, он становится очень полезным в субатомном мире квантовых частиц. Это дает нам способ определить свойства электрона так, чтобы они имитировали тот принцип, с помощью которого мы описываем формы объектов в классическом макромире.

Что заменяет концепцию формы в микромире? Поскольку свет — это не что иное, как комбинация колеблющихся электрических и магнитных полей, было бы полезно определить квантовые свойства электрона, которые несут информацию о том, как он реагирует на эти поля. Давайте сделаем это.

Электроны в электрическом и магнитном полях

В качестве примера рассмотрим простейшее свойство электрона: его электрический заряд. Он описывает силу — и, в конечном счете, ускорение, которое испытал бы электрон, если поместить его в какое-либо внешнее электрическое поле. Это свойство электрона — его заряд — выживает и в квантовом мире.

Аналогично, другое «выживающее» свойство электрона называется магнитным дипольным моментом. Это говорит нам, как электрон будет реагировать на магнитное поле. В этом отношении электрон ведет себя так же, как крошечный стержневой магнит, пытаясь ориентироваться вдоль направления магнитного поля. Хотя важно помнить, что не нужно слишком углубляться в эти аналогии, они просто помогают нам понять, почему физики заинтересованы в измерении этих квантовых свойств с максимально возможной точностью.

Какое квантовое свойство описывает форму электрона? На самом деле их несколько. Самое простое — и полезное для физиков — то, которое называется электрическим дипольным моментом, или ЭДМ.



В классической физике ЭДМ возникает при пространственном разделении зарядов (грубо говоря, это вектор, который соединяет «центр электрической отрицательности» системы с ее «центром электрической положительности»). Электрически заряженная сфера, в которой отсутствует разделение зарядов, имеет ЭДМ, равный нулю. Но представьте себе гантель, шарики которой противоположно заряжены: одна сторона положительно, а другая отрицательно. В макроскопическом мире эта гантель будет иметь ненулевой электрический дипольный момент. Если форма объекта отражает распределение его электрического заряда, это также будет означать, что форма объекта должна отличаться от сферической. Таким образом, очевидно, ЭДМ может помочь определить форму макроскопического объекта.

Электрический дипольный момент в квантовом мире

Однако в квантовом мире определить ЭДМ куда сложнее. Там пространство вокруг электрона не пусто и не неподвижно. Скорее, оно населено различными субатомными частицами, которые в течение коротких промежутков времени переходят в виртуальное существование.

Эти виртуальные частицы образуют «облако» вокруг электрона. Если мы направим свет на электрон, часть света может отразиться от виртуальных частиц в облаке, а не от самого электрона.

Это изменит числовые значения заряда электрона, магнитного и электрического дипольного моментов. Выполнение очень точных измерений этих квантовых свойств расскажет нам, как ведут себя эти неуловимые виртуальные частицы, когда они взаимодействуют с электроном, и изменяют ли они ЭДМ электрона.

Самое интересное, что среди этих виртуальных частиц могут быть новые, неизвестные нам виды, с которыми мы еще не сталкивались. Чтобы увидеть их влияние на электрический дипольный момент электрона, нам нужно сравнить результат измерения с теоретическими предсказаниями размера ЭДМ, рассчитанными в соответствии с принятой в настоящее время теории Вселенной, Стандартной модели.


Все элементарные частицы Стандартной модели.

До сих пор Стандартная модель точно описывала все лабораторные измерения, которые когда-либо проводились. Тем не менее, она не может решить многие из наиболее фундаментальных вопросов — например, почему материя доминирует над антиматерии во всей Вселенной. Стандартная модель также предсказывает ЭДМ электрона: она требует, чтобы он был настолько мал, чтобы эксперимент ACME не имел возможности его измерить. Но что случилось бы, если бы ACME фактически обнаружил ненулевое значение для электрического дипольного момента электрона?

Латаем дыры в Стандартной модели

Были предложены новые теоретические модели, которые исправляют недостатки Стандартной модели, предсказывая существование новых тяжелых частиц. Эти модели могут заполнить пробелы в нашем понимании Вселенной. Чтобы проверить такие модели, нам нужно доказать существование этих новых тяжелых частиц. Это можно сделать с помощью серьезных экспериментов, таких как эксперименты на международном Большом адронном коллайдере (БАК), путем непосредственного производства новых частиц в столкновениях при высоких энергиях.

В качестве альтернативы, мы могли бы видеть, как эти новые частицы изменяют распределение заряда в «облаке» и их влияние на ЭДМ электрона. Таким образом, однозначное наблюдение дипольного момента электрона в эксперименте ACME доказало бы, что новые частицы действительно присутствуют. Это была цель эксперимента ACME.

Что нужно сделать, чтобы измерить электрический дипольный момент? Нам нужно найти источник очень сильного электрического поля, чтобы проверить реакцию электрона на него. Один из возможных источников таких полей можно найти внутри таких молекул, как монооксид тория. Эта молекула и использовалась в эксперименте ACME. Светя тщательно настроенными лазерами на эти молекулы, можно узнать значения электрического дипольного момента электрона, если он не слишком мал.



Однако, как оказалось, это так. Физики коллаборации ACME не наблюдали электрический дипольный момент электрона — это говорит о том, что его значение слишком мало, чтобы их экспериментальный аппарат мог его обнаружить. Этот факт имеет важное значение для нашего понимания того, что мы можем ожидать от экспериментов на Большом адронном коллайдере в будущем.

Интересно, что тот факт, что коллаборацией ACME не был обнаружен ЭДМ электрона, фактически исключает существование новых тяжелых частиц, которые легче всего обнаружить на БАК. Это замечательный результат для «настольного» эксперимента, который влияет как на то, как мы планируем прямой поиск новых частиц на гигантском Большом адронном коллайдере, так и на то, как мы строим теории, описывающие природу частиц. Удивительно, что изучение чего-то такого маленького, как электрон, может многое рассказать нам о Вселенной.
9

Будь в курсе последних новостей из мира гаджетов и технологий

Мы в соцсетях

Комментарии

+44
Интересная статья! Желаю ребятам из АСМЕ удачи в их фундаментальных поисках и побольше таких статей пожалуйста!)
21 января 2019 в 21:10
#
Amican
+55
Интересно, но не понятно пока)
23 января 2019 в 07:49
#
Влерий Пивоваров
0
Цитата из статьи: "Насколько физики знают — в настоящее время электроны не имеют внутренней структуры, и, следовательно, не имеют формы в классическом значении этого слова".
Мой комментарий: Физики знают гораздо больше и объясняют это довольно просто.
Атом представляет собой ядро в потенциальном поле. В этом поле по определённым эквипотенциальным поверхностям (поверхность одинакового потенциала) расположены "стоячие" волны (потенциальное поле колеблется). Каждая полуволна в этом поле и является ЭЛЕКТРОНОМ.
Просто и внятно о строении электронных оболочек здесь:
22 марта 2019 в 22:33
#
–11
4 июля 2020 в 16:34
#